Haemoglobin
Haemoglobin Derivatives
&
Haemoglobinopathy

Dr Piyush Tailor
Associate Professor
Govt. Medical College
Surat
STRUCTURE

• Normal level of hemoglobin (Hb) in blood:
 In males: 14-16 g/dl
 In females: 13-15 g/dl

• Adult Hb (HbA) = 2α + 2β chains.
• Fetal Hb (HbF) = 2α + 2γ chains.
• HbA2 = 2α + 2δ chains.

• Normal adult blood
 – 97% HbA
 – 2% HbA2
 – 1% HbF.
Haemoglobin Structure
Componant of Haemoglobin

- 4 Globin Chain
 - 2 alpha
 - 2 beta
- 4 Heme
 - 4 Porphyrin ring
 - 16 pyrrole ring
 - 4 pyrrole ring in each Porphyrin ring
 - 4 Iron
 - Reduced state = Ferrous(Fe++)
 - One Fe$^{+2}$ in middle of each Porphyrin ring
Partial Pressure of Oxygen

- pO_2 in Inspired air = 158 mmHg;
- pO_2 in alveolar air = 100 mmHg;
- pO_2 in the blood in lungs = 90 mmHg;
- pO_2 in capillary bed = 40 mmHg.
- In lung capillaries, oxygen is taken up by Hb.
- In tissues, oxygen is liberated from Hb.
pO2 at Different Attitude

Table 1. Barometric Pressure and Inspired Po$_2$ at Various Altitudes

<table>
<thead>
<tr>
<th>Altitude, m (ft)</th>
<th>Barometric Pressure, mm Hg</th>
<th>Inspired Po$_2$, mm Hg (% of sea level)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (0)</td>
<td>760</td>
<td>149 (100)</td>
</tr>
<tr>
<td>1000 (3281)</td>
<td>679</td>
<td>132 (89)</td>
</tr>
<tr>
<td>2000 (6562)</td>
<td>604</td>
<td>117 (79)</td>
</tr>
<tr>
<td>3000 (9843)</td>
<td>537</td>
<td>103 (69)</td>
</tr>
<tr>
<td>4000 (13 123)</td>
<td>475</td>
<td>90 (60)</td>
</tr>
<tr>
<td>5000 (16 404)</td>
<td>420</td>
<td>78 (52)</td>
</tr>
<tr>
<td>8848 (29 028)</td>
<td>253</td>
<td>43 (29)</td>
</tr>
</tbody>
</table>
The Bohr effect is illustrated in the diagram. It shows the reaction of carbon dioxide (CO_2) with water (H_2O) catalyzed by carbonic anhydrase (CA) to form hydrogen ions (H^+) and bicarbonate ions (HCO_3^-) (reaction 1). This reaction is reversible. The presence of oxygen (O_2) and hydrogen ions results in the formation of deoxyhemoglobin (Deoxy) (reaction 2). Oxygen can then combine with deoxyhemoglobin (reaction 3) to form oxyhemoglobin (Oxy). The reverse reaction (Haldane effect) occurs in the respirator organ. Bicarbonate ions can react with hydrogen ions to form water and carbon dioxide (reaction 4).
Transport of CO2

Three ways:

1. As Carbamino-haemoglobin = 30%
2. Free CO2 - In Plasma - Dissolved form = 10%
3. As Bicarbonate form = 60%
Decreased P_{50} (increased affinity)
- \downarrow Temperature
- \downarrow PCO_2
- \downarrow 2,3-DPG
- \uparrow pH

Increased P_{50} (decreased affinity)
- \uparrow Temperature
- \uparrow PCO_2
- \uparrow 2,3-DPG
- \downarrow pH
Clinical applications of 2,3 BPG & O2 Dissociation Curve

- In hypoxic condition
 - O2 affinity is decreased with a shift in ODC to right
 - Increase in 2,3-BPG inside RBC.
 - Facilitate unloading of O2
- At high altitude
 - pO2 is low
 - Increased pulmonary ventilation
 - Polycythemia and increase in 2,3-BPG level
 - Increase O2 transport and unloading at tissue
Clinical applications of 2,3 BPG & O2 Dissociation Curve

• In chronic pulmonary diseases and cyanotic cardiac diseases
 – Increase 2,3-BPG level
 – Ensuring maximum unloading of O2 to tissues.
• Transfusion of Large volumes of stored blood
 – Which has low level of 2,3-BPG
 – Lead to sudden hypoxia.
Fetal Hemoglobin (HbF)

- 2 alpha chains = 141 amino acids
- 2 gamma chains = 146 amino acids.
- Synthesis of HbF starts at 7th week of gestation.
- At birth 80% Hb is HbF.
- During the first 6 months of life it decreases to about 5% of total.
- **Physicochemical properties compare to HbA**
 - More solubility of deoxy-HbF
 - Slower electrophoretic mobility
 - Less interaction with 2,3-BPG.
 - More affinity to O2
- Remain elevated in children with
 - Anemia
 - Thalassemia
Haemoglobin Derivatives

- Carbaminohaemoglobin (CO2 + Hb)
- Carboxy Haemoglobin (CO + Hb)
- Met-Haemoglobin (Fe\(^{+2}\) converted to Fe\(^{+3}\))
- Sulf – Haemoglobin (Sulfur + Hb)

Colour of Different Haemoglobin Derivatives

- **Oxy-Hb** = Dark red
- **Deoxy-Hb** = Purple
- **Met-Hb** = Dark brown
- **CO-Hb** = Cherry red
- **Sulph-Hb** = Green
Carboxy-Hb (Carbon monoxy Hb) (CO-Hb):

- Hb binds with carbon monoxide (CO)
- Affinity of CO to Hb is 200 times more than for O2.
- Unsuitable for O2 transport. = O2 bind but it can not unloaded.
- CO poisoning is a major occupational hazard
 - workers in mines.
 - Breathing the automobile exhaust
- Normal people = 0.16%.
- Smoker = Additional 4%
- Clinical symptoms manifest when carboxy-Hb levels exceed 20%.
 - Breathlessness, Headache, Chest pain
 - At 40-60% saturation, death can result.
- Treatment = O2 under high pressure (hyperbaric O2)
Met-hemoglobin (Met-Hb)

- Fe^{+2} (reduce) converted to Fe^{+3} (oxidized)
- Markedly decreased capacity for O2 binding and transport.
- Normal blood = 1% of met-Hb.
- Reducing activity is due to
 - Cytochrome b5
 - NADH (75%)
 - NADPH (20%)
 - Glutathione dependent Met-Hb reductase (5%)
Methemoglobinemia

Met-Haemoglobin = 10 – 15 %
Manifested as Cyanosis.
Methemoglobinemia

• Causes
 – Congenital
 • Cytochrome b5 reductase deficiency
 – Acquired.
 • Intake of water containing nitrites
 • Absorption of aniline dyes.
 • Drugs
 – Acetaminophen, Amyl nitrite, Sodium Nitroprusside.
 • G-6-PD deficiency with small doses of oxidizing drugs.

• Treatment
 – Methylene blue
 – Ascorbic acid
Sulf-hemoglobinemia

- When hydrogen sulfide acts on oxy-Hb, sulf-hemoglobin is produced.

- **Cause**
 - Drugs
 - Sulphonamides, Dapson

- **Treatment**
 - No Specific treatment require
 - RBC turn over reduce conc. Of sulf-Hb
HEMOGLOBINOPATHIES

• Alpha chain genes = 2 Alletes = 16 no. chromosome
• Beta chain genes = 1 Alletes = 11 no. chromosome
• Haemoglobinopathy = Chain Varient
Sickle Cell Disease

- 6th Position Glutamic acid of Beta Chain is replace by Valine
- Glutamic acid = Hydrophilic & Negative Charge
- Valine = Hydrophobic & Neutral Charge
- HbS can bind and transport O2.
- The sickling occur under deoxygenated state.
- The sickled cells form small plugs in capillaries and occlude of major vessels, lead to infarction in organs.
Normal DNA sequence (HbA)

mRNA

<table>
<thead>
<tr>
<th>TGA</th>
<th>GGA</th>
<th>CTC</th>
<th>CTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>threonine</td>
<td>proline</td>
<td>glutamic acid</td>
<td>glutamic acid</td>
</tr>
</tbody>
</table>

Correct amino acid sequence

Mutated DNA sequence (HbS)

mRNA

<table>
<thead>
<tr>
<th>TGA</th>
<th>GGA</th>
<th>CAC</th>
<th>CTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>threonine</td>
<td>proline</td>
<td>valine</td>
<td>glutamic acid</td>
</tr>
</tbody>
</table>

Incorrect amino acid sequence

© Pass My Exams
Sickle Cell Disease

• Sickle cell trait - In heterozygous (AS)
 – 50% of Hb in the RBC is abnormal.
 – 50% of Hb in the RBC is normal.
• Does not produce clinical symptoms.
• Hypoxia causes manifestation.
 – At higher altitudes
 – Chronic lung disorder
Sickle Cell Disease - Pathogenesis

- Hypoxia induce formation of deoxy –HbS
- Make polymerization of Hb
- Sickle Shape of RBC
- Turbulence & Occlusion of blood flow
- Small Capillary & End Arteries Affected
- Ischemia & Later Infarction to Distal Tissue
- Splenic Infarct & Avascular Necrosis of Femur Head
Sickle Cell Disease Pathogenesis

- HbS Polymer
 - β6 Triplet codon
 - GAG → β6 Glu → Valine residue

- HbS solution ↔ HbS polymer
- Oxygenated ↔ Deoxygenated
- HbS cell
- Cell heterogeneity

- Hemolysis

- Vasoocclusion
Polymerization of deoxy HbS

Sickling occurs under deoxygenated state

Sticky patch of 1 deoxyHbS binds with complementary site of another deoxy HbS leading to polymerization of deoxy HbS to form gelatinous network of long fibrous polymer—Distort shape of RBC—sickle shape.
Figure 6–11. Representation of the sticky patch (▲) on hemoglobin S and its "receptor" (△) on deoxyhemoglobin A and deoxyhemoglobin S. The complementary surfaces allow deoxyhemoglobin S to polymerize into a fibrous structure, but the presence of deoxyhemoglobin A will terminate the polymerization by failing to provide sticky patches. (Modified and reproduced, with
Sickle Cell Disease

Diagnosis

Electrophoresis:

- Lack of Carboxyl group of Glutamic acid in HbS
- Lack of Negative charge Glutamic acid.
- HbS - less negatively charged
- Decreases electrophoretic mobility
- HbS move slower than HbA
Electrophoresis
Dithionite test – Sickling Test

• Inexpensive & Rapid
• Use for Screening
• Less Sensitive
• The reagent consists
 • Saponin - Make RBC Haemolysis
 • Na-dithionite - Make Hb deoxygenates
• Principle :
 • Reagent make Hb deoxygenated and causes polymerazition of HbS and Turbidity of Sample
High Performance Liquid Chromatography (HPLC)
Sickle Cell Disease - Treatment

• **Hydroxyurea**
 – Induce gene for gamma globin chain
 – 5 to 10 % fetal Hb synthesis
 – Interfere with polymerization of deoxy HbS
 – Prevent crisis and improve oxygenation

• **Oxygenation**
 – Decrease concentration of deoxygenated Hb
 – Decrease in polymerization & Decrease lysis of RBC

• **Hydration**
 – Increase in body fluid
 – Increase in circulation
 – Increase in oxygenation & Decrease polymerization
 – Decrease in lysis of RBC
HbS gives protection against malaria:
Important hemoglobinopathies

<table>
<thead>
<tr>
<th>Hb</th>
<th>Point mutation position</th>
<th>Amino acid substitution</th>
<th>Codon and base substitution</th>
</tr>
</thead>
<tbody>
<tr>
<td>HbS</td>
<td>Beta 6</td>
<td>Glu→Val</td>
<td>GAG→GUG</td>
</tr>
<tr>
<td>HbC</td>
<td>Beta 6</td>
<td>Glu→Lys</td>
<td>GAG→AAG</td>
</tr>
<tr>
<td>HbE</td>
<td>Beta 26</td>
<td>Glu→Lys</td>
<td>GAG→AAG</td>
</tr>
<tr>
<td>HbD</td>
<td>Beta 121</td>
<td>Glu→Gln</td>
<td>GAG→CAG</td>
</tr>
<tr>
<td>HbsM</td>
<td>Proximal or distal histidine in α or β chains</td>
<td>His→Tyr</td>
<td>CAC→UAC</td>
</tr>
</tbody>
</table>
THALASSEMIAS

• \(\alpha\)-thalassemia
 - Deficiency of \(\alpha\) chain
 - Increase synthesis of
 • \(\beta\) chain – \(\beta\) tetramer = HbH (\(\alpha\) thalassemia intermediate)
 • \(\gamma\) chain – \(\gamma\) tetramer = Hb Bart (\(\alpha\) thalassemia major)

• \(\beta\)-thalassemia
 - Reduce function of \(\beta\) chain due to mutation in its gene.
 - Deficiency of \(\beta\) chain
 - Increase synthesis of
 • \(\gamma\) chain = \(\alpha + \gamma\) tetramer = Increase Hb F
 • \(\delta\) chain = \(\alpha + \delta\) tetramer = Increase Hb A2
<table>
<thead>
<tr>
<th>Condition</th>
<th>Genetic Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>αα</td>
</tr>
<tr>
<td>Alpha Thalassemia Carrier</td>
<td>αα</td>
</tr>
<tr>
<td>Carrier: Asymptomatic</td>
<td>αα</td>
</tr>
<tr>
<td>No abnormalities</td>
<td>αα</td>
</tr>
<tr>
<td>Alpha Thalassemia Minor / Trait</td>
<td>αα or ααα</td>
</tr>
<tr>
<td>Asymptomatic</td>
<td>αα or ααα</td>
</tr>
<tr>
<td>Alpha Thalassemia Intermediate</td>
<td>αα</td>
</tr>
<tr>
<td>Hb H Disease: Symptomatic</td>
<td>αα</td>
</tr>
<tr>
<td>Alpha Thalassemia Major</td>
<td>αα</td>
</tr>
<tr>
<td>Incompatible with Life</td>
<td>αα</td>
</tr>
<tr>
<td>Hydrops Fetalis = Hb Bart</td>
<td>αα</td>
</tr>
<tr>
<td>β – Thalassemia Genotype</td>
<td>Genotype</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>β – Thalassemia Minor</td>
<td>β / β+ or β / β0</td>
</tr>
<tr>
<td>β – Thalassemia Intermediate</td>
<td>β+ / β+ or β+ / β0</td>
</tr>
<tr>
<td>β – Thalassemia Major</td>
<td>β0 / β0</td>
</tr>
</tbody>
</table>

β+
- Mutation in β chain gene
- β chain synthesized But
 - Reduce function of β chain
 - Partial function of β chain is conserved

β0
- Mutation in β chain gene
- β chain does not synthesized
Disease - Pathogenesis

• Decrease amount of alpha / beta chain formation

1. Decrease Haemoglobin = Severe Anaemia
 ✓ More positive feedback to Bone marrow
 o Bone marrow Hypertrophy = Bulging of Facial bone
 o Cortical Thinning = Banding of weight bearing bone
 ✓ Reticular Endothelial System-Organ hypertrophy
 o Hepatomegaly

2. More amount of abnormal Hb (HbH & Hb Bart)
 ✓ More haemolysis of RBC
 o Spleenomegaly & Jaundice
Pathogenesis Due to Treatment

Frequent Blood Transfusion
– Increase Iron Overload
 • Hemosiderosis / Hemochromatosis
 • Liver cirrhosis
 • Cardiomyopathy – Severe Systolic Dysfunction
 – Main cause of death of thalassemia patient
 • Chelating agent is given to prevent iron overload
– Increase chances of infection like - HIV, HBsAg

Bone marrow transplantation
Clinical Feature of Thalassemia due to Pathology

- Severe Anaemia
- Jaundice
- Stunted growth
- Frontal Bossing
- Maxillary hypertrophy
- Zygomatic process prominent
- Depression of nasal bridge
- Osteoporosis in all the bones
- Huge Hepato-Splenomegaly
MYOGLOBIN (Mb)

• It is seen in muscles.
• Single polypeptide chain
• One molecule of Mb combine with 1 O2.
• Mb has higher affinity for O2 than that of Hb.
• The pO2 in tissue is about 30 mmHg
 – Mb is 90% saturated.
 – Hb is 50% saturation.
• In severe physical exercise, pO2 in muscles lowers to 5 mmHg, when myoglobin releases all the bound O2.
Definition of Anemia

- Decrease in RBC mass
- Deficiency in the oxygen-carrying capacity of the blood due to a diminished erythrocyte mass.
- May be due to:
 1. Erythrocyte loss
 2. Decreased Erythrocyte production
 3. Increased Erythrocyte destruction
Type of Anaemia

<table>
<thead>
<tr>
<th>Type of Anaemia</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>14 – 17.5 gm%</td>
<td>12.5 – 15.5 gm %</td>
</tr>
<tr>
<td>Mild Anaemia</td>
<td></td>
<td>Up to 11 gm %</td>
</tr>
<tr>
<td>Moderate Anaemia</td>
<td>8 to 11 gm%</td>
<td></td>
</tr>
<tr>
<td>Severe Anaemia</td>
<td></td>
<td>Less than 8 gm%</td>
</tr>
</tbody>
</table>
Cause of Anaemia

1. Decrease Production
2. Increase destruction
3. Loss of Blood
Cause of Decrease Production of RBC

• **Nutritional deficiency**
 – Iron deficiency
 – Folic acid deficiency
 – Vitamin B12 deficiency

• **Genetic defect (defective chain synthesis)**
 – Thalassemia
 – Sickle Cell anemia

• **Bone Marrow defect**
 – Aplastic anemia
 – Bone marrow depression
 – Myelodysplastic anemia

• **Renal Failure** – Decrease erythropoien production

• **Inhibititon of Heme Synthesis**
 – Lead Poisoning – Petrochemical Occupation
 – Congenital erythropoietic porphyria
Cause of Increase Destruction of RBC

- **Intrinsic abnormalities**
 - paroxysmal nocturnal hemoglobinuria
 - Hereditary spherocytosis
 - Hereditary elliptocytosis

- **Enzyme deficiencies**
 - Pyruvate kinase & hexokinase deficiencies
 - G-6-PD deficiency

- **Hemoglobinopathies**
 - Sickle cell anemia
 - Thalassemia

- **Infections**
 - Malaria

- **Extrinsic abnormalities**
 - Blood Transfusion reaction
 - Erythoblastic fetalis
 - hemolytic disease of the newborn
 - Autoimmune hemolytic
 - Systemic Lupus Erythematosus
 - Chronic lymphocytic leukemia

- **Drugs Induce**
 - Aspirin
 - Quinine
Cause of Increase Loss of RBC (Blood)

- Polytrauma
- Post Major Surgery
- Internal Hemorrhage
 - Haematemesis - Malena
 - Portal Hypertension – Cirrhosis of Liver
 - Peptic ulcer
 - Inflammatory Bowel Disease
 - Haemoptysis
 - Lung malignancy
 - Tuberculosis
 - Haematuria
 - Renal Malignancy
 - Renal Stone
- Menorrhagia