Ion selective electrode (ISE)

Riya Patel
Minal Meghat
Sangita Prajapati
Riya Gamit
Hemangini Painter
Introduction

• Ion selective electrode (ISE) is an analytical technique used to determine the activity of ions in aqueous solution by measuring the electrical potential.
• Specific ion dissolved in a solution create an electrical potential, which can be measured by a voltmeter or pH meter.
• The strength of this charge is directly proportional to the concentration of the selected ion.
Principle

- ISE consists of a thin membrane
- Only specific ion can be diffuse.
- By measuring the electric potential generated across a membrane by “selected” ions, and comparing it with reference electrode.
- And net charge is determined.
Potentiometry

- **Potentiometry**
 - Use of Electrodes to Measure Voltages that Provide Chemical concentration

- **Indicator Electrode:**
 - Electrode that responds to analyte

- **Reference Electrode:**
 - Second ½ cell at a constant potential

- Cell voltage is difference between the indicator and reference electrode
Reference Electrode

Silver-Silver Chloride Reference Electrode

\[\text{AgCl}(s) + e^- \rightleftharpoons \text{Ag}(s) + \text{Cl}^- \]
Types of ISE

- Glass membrane
- Solid state electrode
- Liquid based electrode
- Compound electrode
Glass Membrane Electrode

- This method uses the electrical potential of pH-sensitive electrodes as a measurement signal.
- The glass electrode is the most commonly used sensor.
- Not having the disadvantages of the optical methods, it can be used almost universally.
Solid State Electrode

- Electrode body of Inorganic crystalline polymer.
- E.g. Special Epoxide Resin with excellent mechanical properties.
- High temperature stability.
Liquid based electrode

- Formed by a very thin layer of an organic liquid.
- Membrane is like jelly
- Impermeable to water
- Only to allow to pass certain ion.
- Organic material
 - Carbon tetrachloride
 - Benzene
 - Mesitylene
Compound electrode

- Electrode have membrane of multiple type
Electrolytes

- Type of ions
 - Cations – Positive charge
 - move toward the cathode
 - Na\(^+\) = Extracellular – Brain Activity
 - K\(^+\) = Intracellular – Heart & Muscle
 - Ca\(^+\) = Extracellular – Heart & Muscle
 - H\(^+\) = Extracellular - Acidic
 - Anions – Negative charge
 - move toward the anode
 - Cl\(^-\) – Extracellular
 - HCO\(_3\) – Extracellular - Basic
Sample Collection

• Serum
 • Collected in heparin bulb
 • Plain
 • EDTA can not be use for doing electrolyte
 • EDTA is chelating agent & anti-coagulant.
 • It chelat with all ions of blood
 • So interfere with concentration of ions

• Urine
 • Collected in plain vacuette
Types of Heparin vacuette

- Ammonium
- Lithium = Lithium+ heparin
- Sodium= Sodium+ heparin

For measure the sodium

- lithium heparin vacuette
- ammonium heparin vacuette

Use of sodium vacuette gives false high sodium concentration.
Routinely measured electrolytes

Sodium
- (90%) Major cation
- Extracellular fluid **outside cells**

Normal values
- Serum = 135-145 mEq/L
- Urine (24 hr) = 40-220 mEq/L

Functions
- Influence on regulation of body water
- Osmotic activity
- Central - Neuromuscular activity
Hyponatremia

- Hyponatremia <135 mEq/L
 - Increased Na+ loss
 - Causes
 - Diabetes mellitus
 - Diabetic Ketoacidosis
 -- Because of diuresis
 - Severe diarrhea & Severe Vomiting
Hypernatremia

- Excess water loss resulting in dehydration (relative increase)
 - Dehydration from inadequate water intake
 - Dehydration due severe diarrhea
 - Diabetes insipidus
 - Burns
Potassium (K)

- (2%) major cation
- Intracellular fluid inside cell

Normal value

- Serum - 3.5-5.3 mEq/L
- Urine - 25-125 mEq/L

Function

Heart muscle contraction

Increase or Decrease K+ = Arrhythmiasis
Hypokalemia

- Hypokalemia = a low level of potassium (K⁺) in the blood serum.
- Diarrhea
- Medications like furosemide (diuretic)
- Dialysis
- Diabetes insipidus
- Hyperaldosteronism
Hyperkalemia

- Increased K concentration

- Causes
 - Acute Renal failure
 - Chronic Renal failure
 - Acidosis (Diabetes mellitus)
 - H+ competes with K+ to get into cells & to be excreted by kidneys
 - Decreased insulin promotes cellular K loss
 - Hyperosomolar plasma (from ↑ glucose) pulls H₂O and potassium into the plasma.
ELECTROLYTE SHIFTS

Acidosis
Compensatory Response

- H^+ buffered intracellularly
- Hyperkalemia

Alkalosis
Compensatory Response

- Tendency to correct alkalosis
- Hypokalemia
Chloride (Cl⁻)

Chloride
 Major cation
 Extracellular fluid
Normal value
 - Serum – 100-110 mEq/L
 - 24 hour urine – 110-250 mEq/L
 varies with intake
 - CSF – 120-132 mEq/L
Hypochloremia

Same as Hyponatremia

- congestive heart failure
- Severe diarrhea
- Severe vomiting
- drugs such as
 - Laxatives
 - diuretics
 - corticosteroids
 - Bicarbonates.
Hyperchloremia

• Same as Hypernatremia
• Increased serum Cl
 – dehydration
 – renal tubular disease
 – metabolic acidosis
Advantages

1. Good Linearity
2. Good precision
3. Less chance of damage
4. No consumption require
5. Non-contaminating.
7. Less interference from serum color & turbidity.
Limitations

1. Electrodes can be blocked by proteins.
2. Interference by other ions.
3. Electrodes are fragile.
4. Limited electrode life – 3 to 4 months.
Application of ISE

- Electrolyte
 - Sodium
 - Potassium
 - Calcium
 - Lithium
 - Iodine
 - Magnesium
 - Chloride
 - Fluoride

- Glucose

- Urea

- Arterial Blood Gas Analysis
 - pO2
 - pCO2
 - pH
 - HCO3-